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The combined effects of electron-beam betatron motion and non-negligible emittance provide a rich
phenomenology of the radiation emitted in linearly polarized undulators. Indeed, even harmonics may
be radiated on axis and the induced inhomogeneous broadenings depend on the electron-beam matching
condition. We discuss the dependence of undulator brightness on electron-beam betatron motion and
also analyze how the harmonic spectrum depends on the electron-beam emittance and Twiss parameters.
We present independent analytical and numerical analyses, make a comparison between the two
methods, and comment on the limits of the analytical treatment.

PACS number(s): 41.60.Cr, 41.85.Lc, 52.75.Ms, 07.77.—n

I. INTRODUCTION

The influence of betatron motion on undulator bright-
ness has been recently accounted for, and the combined
effects of beam emittances and Twiss coefficients on the
broadening of the undulator radiation spectrum have
been discussed [1]. The results of the analysis can be
summarized as follows: (1) Line broadening depends on
the electron-beam Twiss parameters and emittances. (2)
Deviations from the matching condition provide further
line broadening and peak brightness reduction. (3) The
harmonic content of the emitted radiation is much richer.

In this paper we will reconsider the above problems
within the context of a numerical treatment. Before
entering into specific details, we should make some pre-
liminary points: (a) We consider the case of linear undu-
lator brightness, which is calculated including the trans-
verse components of the magnetic field whose on-axis
component is assumed to be polarized along the y direc-
tion. (b) The undulator is focusing equally along the
vertical components of the electron motion and the asso-
ciated betatron frequencies are [1]

_a _1K
Qx—ﬂy—'57ﬂu , (1
where B, is the peak on-axis magnetic field, A, is the un-
dulator period, N is the number of undulator periods,
L,=NA, is the length of the undulator,
K =eBgyA, /2mmc? is the undulator parameter, y is the

electron-beam relativistic factor, and Q, =2wc /A, is the
frequency associated to the undulator period. (c) The
electron beam, at the undulator input, is distributed in
phase space as
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where TE, is the electron beam emittance
2
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(d) The electron beam is said to be matched whenever
«—_V 4 —_C

By 7K M Q, 3)

and a,,=0.

When the betatron motion is included, new harmonics
due to the betatron oscillations contribute to the bright-
ness. The analytical expression providing the brightness
is significantly more intricate than the usual expression
[2]. In fact, one obtains [3]
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The symbol {i} denotes the various harmonics. The harmonic oscillator Hamiltonian H, spe01ﬁes the betatron motion
Hamiltonian, 17(0) and %'(0) are the off-axis phase-space initial coordinates. The amphtudes T iy ) are specified by

x K

Ty = _7[‘](”1—1)/2(_A)+J(m+1)/2(—A)]$n(Bx’Cx)
-—%Jm/z(—A){[x’(0)+i.3;_1x(0)]50,,+1(B,¢,Cx)+[x'(0)-—iB;_1x(0)]fD,,_I(BX,CX)}
XD, (B,,C,)R (D _,F_)R(D ,F,);
1 , ok — , o —
Ty == {y"(0)+iB} 'y (0)}D, +1(B,,C,) +[y"(0)=iB; ~'y(0)]D, _,(B,,C,)}
><']m/2(_‘4)1)n(Bx’(jx )RK(D—’F— )R[(D+’F+) ’ (68)
[
where are evaluated performing a ‘“naive” convolution [1] on
Lk 2 (2), thus getting
©
A=—|— , B,=i—mn(0)n'(0) iv t
8 Q — m
Y u F(Vm)zleefldt ((1 t)e =, )
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to Equation (7) provides the spectrum inhomogeneous
D,(x, )= 3 L—pnpxiny), broadening and the dependence on the electron beam
I=—o Twiss parameters. To give an idea of the spectrum dis-
tortion due to the various electron beam parameters,
R, (x,y)= 2 I, _;(x)J(y) . (6b)  which affects the brightness, in Fig. 1 we have plotted the
I=—o

If we keep 7(0)=n'(0)=0, Eq. (4) reduces to the usual
expression; the extra contributions are just due to the in-
clusion of the off-axis motion effects. (For further com-
ments see Ref. [3].) The position of the peak of a given
harmonic is provided by the value of @ for which the
argument of the sinc in Eq. (4) vanishes. Since
Q, , /0, <<1, the most significant contribution to identi-
fying the peak should come from the integer m +x+L
The additional terms should contribute with a not partic-
ularly significant shift. The summations on the indices
are, however, independent. One can, therefore, identify
the harmonic with the index m and arrange the summa-
tions in such a way that the « and / indices of the sine ar-
gument cancel each other. This does not mean that we
are eliminating the dependence on these indices, which
otherwise contribute through the Bessel functions.

The considerations we have developed refer to the case
of a single electron injected into the undulator with initial
phase-space coordinates (xg,x,7,o). The effect of the
whole beam is obtained by averaging Eq. (4) on the
phase-space distribution (2). Assuming a sinc? shape for
the spectrum of the nth harmonic, the line distortion
effects due to the electron beam phase-space distribution

brightness of the first harmonic for the parameters re-
ported in Table I(a) and for different values of the Twiss
coefficients. For a matched beam, owing to the smallness
of the emittances, the spectrum is almost insensitive to
inhomogeneous broadening effects. When a,, Bn’ and v,
deviate from the matching condition, the spectrum is
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FIG. 1. First-harmonic brightness vs frequency parameters
of Table I(a). Curve a: a,=a,=0, B,=B,=B*=(y/7K)A,.
Curve b: a,=a,=1, B,=B,=B*. Curve c: a,=a,=0.5,

B.=B,=B*/10.
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FIG. 2. Third-harmonic brightness vs frequency. Curve a:
a,=a,=0, B,=B,=B*% e,=¢,=0. Curve b: a,=a,=0,
B =B, =pB*; emittances £, =7X10"7 (cmrad), g, =8X 1078
(cmrad). Curve c¢: a,=a,=1, B,=pB, =f*/10; emittances:
same as case (b).

broadened and distorted. The reduction and distortion
effects are more evident for higher harmonics. The elec-
tron beam effects on the third-harmonic brightness are
shown in Fig. 2: the emittance, albeit small, produces a
sizable inhomogeneous broadening even in the matched
case. One of the effects of the inclusion of the off-axis
motion in the analysis of undulator brightness is the pres-
ence of on-axis even harmonics.

To evaluate, e.g., the second on-axis harmonic, we are
forced to perform a rather crude approximation, which is
of the same type as that used to evaluate the odd harmon-
ic case, but more doubtful, since in this case the emission
is dominated by the betatron motion (see Ref. [1]).

To perform the calculation and carry out the integra-
tion on the phase-space distribution, we neglect, in Egs.
(6), all the (D,R) functions having index larger than 0
and make the further assumption that
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TABLE 1. Parameters used in several figures.

(@ y=1.7X10% g,=7X10"° mrad
€,=0.8X107° mrad, A, =5 cm

N =20, k=1.48

(b) y =40, sx=% mm rad,
£,=—— mm mrad

Y40

N =20, K=V2, ,=5 cm

(c) y=40, e, =7 mmmrad, £,=7 mm mrad
N=20, K=V2, A,=5 cm

The arbitrariness of these assumptions is evident, and we
will comment on their range of validity in the next sec-
tion. However, they allow us to obtain the following ex-
pression for the m =2 spectrum distortion:
Vx€x(1+2imp t)

{ [R)((Z)(I)PR;Z)(I‘)} 172

7,€,(1 +2i7'r,uy,t)

[ [Ry(Z)(t)]3R,£2’(t)} 172

(10)

l‘vzt

F(v2)=2Ref01dt(l—t)e

It is evident that the second-harmonic brightness is pro-
portional to the beam emittance and that it should be-
come larger when the Twiss parameter Yy increases.
This is the case as shown in Fig. 3 where the second-
harmonic brightness is plotted versus the frequency for a
matched and a nonmatched beam. Under the latter hy-
pothesis, the inhomogeneous broadening contributions
are beneficial in the sense that the greater the emittance
the higher the brightness, and it becomes even higher if

(Dy,Ry)~(1,1) . (9)  the beam is mismatched by enhancing the Y , parameter.
6 2 60} b
%4l a0t
g <
3 r g T
32} 3 20}
M M & FIG. 3. (a) Second-harmonic brightness vs
ob— TV, ol L frequency [parameters of Table I(b)]. Matched
1.0 1.1 1.2 1.3 1.0 1.1 1.2 13 case (a,=a,=0, B,=B,=B*). (b) Second-
1014 (Hz) 1014 (Hz) harmonic brightness vs frequency [parameters
of Table I(b)]. Unmatched case (a, =a,=0,
2.0 8 B.=B,=pB*/10). (c) Second-harmonic bright-
9 F ness vs frequency [parameters of Table I(c)].
S st Ser Matched case (a,=a,=0, B,=B,=B%): (d)
8 g r Second-harmonic brightness vs frequency [pa-
g’ 10 g’ 4r rameters of Table I(c)]. Unmatched case
& & T (@, =a,=0, B, =B,=B*/10).
S osf e 2f
] - —t : Y
1.0 1.1 1.2 1.3 1.0 1.1 1.2 1.3
1014 (Hz) 1014 (Hz)
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II. COMPARISON BETWEEN ANALYTICAL brightness as a function of the frequency. The initial

AND NUMERICAL RESULTS values xg,y¢,Xg,yq of each electron trajectory are ob-

tained, using a Neumann procedure [4], from the distri-

bution function (2). Recalling that the brightness, name-

The numerical procedure exploited to include the effect  ly, the energy radiated per unit solid angle and unit fre-

of the initial electron beam phase-space distribution is  quency intervals, is given by the well-known expression
based on a Monte Carlo sampling of the mean electron  [5] (s =fct)

d*l _ e%w?

= 11
dew 477'2(;3 ( )

f_+°°[n><(n><B)]exp i%(s —n-r) |ds

>

where n is a unit vector determining the direction of observation, and r and B specify the particle position and velocity,
respectively, we treat the problem numerically, solving the system of ordinary differential equations (a=x,y,z):

d R _ [ . d I . [ _ .
Zfa =[nX(nXpB)],cos —c—(s —n-r) |; Efa =[nX(nXpB)],sin 7(s nr)|;
d? 27 | K dz . dy
—x=|-"—|— | A(x,y)—sin |27— | —«k,y (s)— cos 27—
ds? lk,, y Vs " w5 Ay ’
d? 27 | K | dx z Ky dz z
—y=|7—|— |=—cos |27— | ———6x(s)——sin [27—— s);
ds2” |, |7 |ds n, | T2 )y n | P
2
d*z 27 | K |1 |27 d dx | . z
—= === |7 | &x(s)y(s)—y(s)— A(x,y)—— |sin [27— | ; (12)
ds? | A, |7 |2 |~ v (s) 55| Y ds A |
16
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FIG. 4. First-harmonic brightness vs frequency [parameters
of Table I(a)]. Curve a: Analytical approximation; curve b: nu-
merical analysis, a, =a,=0, B, =B, =pB*; curve c: analytical FIG. 5. Third-harmonic brightness vs frequency [parameters
approximation; curve d: numerical analysis, a,=a,=1, of Table I(a)]. Curve a: Analytical approximation; curve b: nu-

B.=B,=B*/10. merical analysis, a, =a, =0, B, =B, =B*.
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order in the transverse coordinates (x,y) [6]. We choose
=1 so as to have a magnet focusing equally in both ra-

52
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FIG. 6. Same as Fig. 5. a,=a,=0.5, 8,=B,=B*/5.
where

2

A(x,y)=1+ [6x2(s)+(2—8)yXs)] . (13)

27
4|2,

The last three equations in (12) are the Lorentz force
equation for an electron moving in a magnetic field with
components

B, (x,y,z)=1B,8k%xy sin(k,z) ,
B,(x,y,2)=B, 1+%Ki[8x2+(2—8)y2]sin(xuz) R

B,(x,y,z)=B,k,y cos(k,z) ,

K, =2m/My . (14)

The magnetic field has been expanded up to the lowest

dial and vertical directions.

The initial conditions of the system (12) are specified by

dx , K
x(0)=x,, s s=0=x0——y— ;
— Y o
0)= s - ’
y(O=yo, o
-0 9z (A2 212
Z(O)_‘O, 7 _0_(3 _XO _yo ) . (15)
The solution is evaluated in the interval [O,L,]
(L,=NA,) and the brightness is expressed as
dI 2 ol R Roemat2
dodQ  4r% | c § {lfa (L) =fa(0)]
L)~ f O .
(16)

The results of the integration are shown in Figs. 4-6,
where we make a comparison with the results from the
analytical treatment. In the figures we show the predic-
tion of the first- and third-harmonic brightness for
matched and nonmatched cases. It is evident that when
we move away from the matching condition, the two
methods provide results whose difference becomes more
significant.

Even for the matched case, where substantial agree-
ment exists between the two methods, the difference be-
comes more evident with increasing order of harmonic.

Figure 7 and 8 show the first- and third-harmonic
brightness for the parameters of Table I(b) and I(c). It is

g
o

a) 16F b)
’\:,—T 15 = B FIG. 7. (a) First-harmonic brightness vs fre-
g § 121 quency [parameters of Table I(b)]. Curve a:
o 10 (b) (a) ; o8k Analytical approximation; curve b: numerical
:3 8 | analysis, = matched  case (a,=a,=0,
© 05} 3 o0al B<=B,=B*). (b) Third-harmonic brightness
- L vs frequency. Same as (a).
0 e 0
0.55 0.57 0.59 0.61 0.63 0.65 170 174 178 182 186 1.90
1014 (Hz) 1014 (Hz)
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1.0
161 a) - b)
T i E 08 i FIG. 8. (a) First-harmonic brightness vs fre-
3 1.2 i 8 o6t quency [parameters of Table I(c)]. Same as
S o8k g’ B ; ".‘ Fig. 7(a). (b) Third-harmonic brightness vs fre-
_@. L Nl 04 i /I quency [parameters of Table I(c)]. Same as
h"c 04 e 0.2+ ," ‘l‘ Flg. 7(3).
0 e 1 o 1 1 .\ = . 1
0.4 0.8 16 1.7 1.8 19 20
1014 (Hz) 1014 (H2)
evident that the agreement between the analytical and the K —_—
. . . o = Y 2 2. 2
numerical analysis becomes less satisfactory with increas- Ro(D4,Fi)=J, 1+K2/2 \/xo +(Q5x0) (18)

ing emittance. As expected, the analytical approximation
totally fails in predicting the amplitude of the second har-
monic (see Figs. 9 and 10).

The problem now is to understand the reason for the
discrepancies. We recall that, to perform the average on
the distribution (2), we neglected the D and R functions
with indices whose modulus is greater than 0 and we
made the further assumption (14). We will see why this
approximation may not work. The use of the Graf addi-
tion theorem [7] lets us write

Expanding the Bessel function up to the lowest order and
integrating over the phase-space distribution, we find?
1K

(Ry(D, ,Ft))=1— -
o 8N 1+K2/2

(1+a2 )y +py)

(19)

The correcting term may be negligible if the beam is
matched and, thus, the inhomogeneous broadening con-
tributions are minimized; otherwise, the mismatching

Ro(x,y)=JyV x2+p? a”n may cause a sen§ible corr?,ction.
ol%y ° Y The modulating function due to the betatron motion
may induce corrections. Proceedings as in the previous
and for our variables! case, we write
J
212
— 1 ]54(277)2 2 _LG 1 ) Q,
Dy(B,,C )=Jo(V' B2+C? )= |1— ( ot e . (20)
(B Co) =TV B +C 4 | a2(+k227 O T vk |10 e T

Averaging on the initial phase-space distribution, we find
that the second term in the curly brackets vanishes for a
matched beam, while the first term can be neglected if

u
2‘y2

me, <<A=—>(1+K?/2) . 21

It is clear that, when the matched condition or the in-

!We have substituted o with 272w, /(1+K?/2) and neglected
Q, , with respect to ,,.

equality (21) does not hold, D, cannot be approximated
with 1.

The reason for the discrepancy between analytical and
numerical results may, however, derive from other facts.
Most of the examples discussed so far refer to an electron
beam with very large energy (y =1.4X 10%), so the beta-
tron wavelength is much larger than the undulator length
itself. This means that the representation of the betatron
motion in terms of trigonometric functions, even though

2Where the brackets denote an average on the phase-space dis-
tribution.
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1.2

0.8

10'25(erg-sec /sr)
T

1.0 1.1 1.2 13
1014 (Hz)

FIG. 9. Second-harmonic brightness vs frequency. Numeri-
cal analysis. Same parameters as Fig. 3(c). Analytical and nu-
merical predictions differ by about one order of magnitude.

correct from the analytical point of view, may be doubt-
ful for computational purposes. In addition, the concept
itself of betatron harmonics may sound rather artificial.
This interpretation is supported by the result of Fig. 11,
where we have compared the results relative to the in-
dependent methods: (a) numerical integration of the
electron trajectory and of the Lienard-Wiechert integral;
(b) numerical integration of the Lienard-Wiechert in-
tegral using the analytical approximation of the electron
trajectory; (c) fully analytical computation, i.e., use
of Eq. (4) fixing the phase-space initial coordinates
(x0,X0,Y0:Y0)-

It is evident that (b) and (c) yield almost equivalent re-
sults, which differ substantially from method (a) in the
case of large y¥. Furthermore, when ¥ is large, a reason-
able convergence of the brightness is provided by includ-
ing a large number of contributions from the indices »
and p as indicated in Fig. 12. A further delicate point
comes from the relative error required in the computa-

10'25(erg-sec /sr)
—

0 1 1 1 1 1
1.0 1.1 1.2 1.3
1014 (Hz)

FIG. 10. Second-harmonic brightness vs frequency. Same as
Fig. 9. Nonmatched case (a, =a, =0, B, =B, =*/10).
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tion of Bessel functions when a large number of contribu-
tions from 2 modulation is included. The different pre-
dictions requiring relative errors of 107% and 108 are
shown in Fig. 13.

It is evident that the analytical approximations of Sec.
IT are hampered by the crude assumption that the various
modulating terms can be approximated with 1. Such an
approximation becomes unsatisfactory for harmonics
dominated by betatron motion, as in the case of even on-
axis harmonics. However, it should be understood that
Eq. (4), providing the single-electron brightness, without
the average on the phase-space distribution is in close
agreement with the numerical calculation performed us-
ing the analytical approximation of the electron motion.
Furthermore, some differences appear for the case of full
numerical integration when the phase-space coordinates
are taken far from the center of the distribution (see Fig.
14). Even though Eq. (4) allows one to understand the in-
terplay between the various motion components in the
emission process, its convolution on the distribution (2)
can be achieved only with great difficulty and, therefore,
a numerical integration appears unavoidable. However,
all the numerical procedures necessary to check the relia-

2.5
B
g 1.5
3
o
a
g 05
)
-0.5 1 1 i 1 1
1.28 1.30 1.32 1.34 136 138 1.40
1019 (Hz)
b
a2l AY_(b)'(O )
_ i/
= r (a) / \
S L \
§ 08 I\
2 |
G | \
@ 04+ / \
e |
0 1 1 i 1
1.06 1.10 1.14 1.18 1.22
1014 (Hz)

FIG. 11. (a) Second-harmonic brightness vs frequency [Table
I(a)]. Curve a: Fully numerical analysis; curve b: analytical ap-
proximation of the electron trajectory and numerical integra-
tion of the Lienard-Wiechert integral; curve ¢: Bessel function
expansion [Eq. (5)] x,=1X10"' cm, y,=3X10"% cm,
x6=6.8X107% cm, yo=2X10"% cm. The last result has been
obtained by keeping the contribution on the n index between
—200 and +200. The plot refers to the “single-electron” case
and does not contain integration on the phase-space distribu-
tion. (b) Same as (a) (parameters K =1.48, y =40, N =20). The
b and ¢ computations are indistinguishable.
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FIG. 12. (a) Second-harmonic brightness vs frequency

(y=1.4X10%). Curve a: Analytical approximation of the elec-
tron trajectory and numerical integration of the Lienard-
Wiechert integral; curve b: Same as ¢ in Fig. 11(a); curve c:
Same as b but with » ranging from — 100 to 100; curve d: Same
as b but with n ranging from —28 to 28. (b) Same as (a)
(y=40). Curve a: Bessel function expansion n = —4,4; curve
b: Same as a n = —2,2; curve ¢: Same as a n =0.

bility of the computation require computer times compa-
rable to or even longer than the fully numerical pro-
cedure.

Before concluding it is, perhaps, worth adding
a few comments on the numerical computation
of the generalized Bessel functions J,(x,y) and

ﬂg(x,y;z,u)(§=n,p,x,l), which have been calculated us-
ing the integral representatives

1020 (erg-sec/sr)
w W

i

-1
1.28 130 1.32 134 136 1.38 1.40
1019 (Hz)

FIG. 13. Second-harmonic brightness vs frequency. Same as
Fig. 12(a). Evaluation with Bessel function expansion. Curve a:
Relative error on Bessel functions 1075 curve b: relative error
on Bessel functions 1078,
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2.0
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1.6
12 (b) (a)

0.8

10’"(erg~seclsr)

0.4

T T T 1 1T 17T

0 e L L s

0.50 0.54 0.58 0.62 0.66 0.70
1014 (Hz)
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© = =
o ~N (-]
T T

o©
FS
T

0 .
0.50 0.54 058 0.62 0.66 0.70
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FIG. 14. (a) First-harmonic brightness vs frequency. Curve
a: analytical procedure. Curve b: numerical procedure [pa-
rameters of Table I(b) xo=yp,=x,=yy=0]. (b) Same as (a).
Curve a: Full numerical computation; curve b: analytical com-
putation indistinguishable from the numerical integration of the
Lienard-Wiechert integral using the analytical approximation of
the trajectory.

1 p7 . .
I, (x,y)=— — — 6 R
m(x,¥) fo cos(mO—x sinf—y sin20)d

1 T
R V3Z,u)=— 6+ 20
| eDg(x,y;z,u) - fo cos(x cos@+y cos20)

X cos(£0—2z sinf—u sin26)d 6 ,

1 T
Yz, u)=— i 6+ 2
IImﬂg(x y;z,u) . fo sin(x cos@+y cos20)

X cos(£0—zsin260)d 6 . (22)

The convergence of the expansion was controlled using
the Parseval condition, in the present case provided by

+
S Ddxyizwl?=1. 23
E=—o0

+ o0
> Ji(x,y)=1,

m=—o

The “messages” contained in this paper can be finally
summarized below. (a) The role played by the Twiss pa-
rameters in the analysis of undulator radiation is not
secondary; a possible mismatch of the electron beam
may, indeed, strongly affect the brightness. (b) The in-
clusion of inhomogeneous broadening effects using the
“naive convolution method” of Sec. II is more reliable in
the case of matched beam and for the fundamental har-
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monic. (c) Even in the case of matched conditions,
neglecting betatron motion may give rise to substantial
deviations from the correct analysis. (d) The naive
method for the study of even on-axis harmonics is highly
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doubtful and, in this case, the numerical analysis seems to
be mandatory. We will see the consequences of the
present analysis on free-electron-laser dynamics in a
forthcoming paper.
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